Preciso de ajuda nesse codigo que implementa o algoritmo de Dijkstra (Grafo):

O programa deve solicitar ao usuário o vértice de partida da rota e o vértice de destino. Em seguida, deve descrever o menor trajeto possível do vértice de partida até o destino. Por exemplo, dado o vértice de partida 2 e o vértice de destino 4 para o grafo abaixo, o programa deve apresentar a saída 2 – 3 – 4.

public class shortestPath {
  
  static final int V = 9;
  
  /* Encontra o vértice mais próximo do conjunto de vértices ainda não incluidos na árvore de menor caminho */
  int minDistance(int dist[], Boolean sptSet[]) {
    // Inicializa o menor valor
    int min = Integer.MAX_VALUE, min_index = -1;
    
    for (int v = 0; v < V; v++)
      if (sptSet[v] == false && dist[v] <= min) {
        min = dist[v];
        min_index = v;
      }
    
    return min_index;
  }
  
  // Exibe o vetor distancia
  void printSolution(int dist[]) {
    System.out.println("Vertex \t\t Distance from Source");
    
    for (int i = 0; i < V; i++)
      System.out.println(i + " \t\t " + dist[i]);
  }
  
  // Imlementa o algoritmo
  void dijkstra(int graph[][], int src) {
    // Vetor que possui o resultado. Armazena a distância de cada vértice para a origem.
    // dist[i] possuirá o menor caminho da origem até i.
    int dist[] = new int[V]; 
    
    // sptSet[i] será true se o vértice fizer parte do menor caminho
    // ou se não for possível continuar
    Boolean sptSet[] = new Boolean[V];
    
    // Inicializa todas as distâncias com o maior valor possível
    // e stpSet[] como false
    for (int i = 0; i < V; i++) {
      dist[i] = Integer.MAX_VALUE;
      sptSet[i] = false;
    }
    
    // A distância de todo nó para si mesmo é zero
    dist[src] = 0;
    
    // Encontra o menor caminho para todos os vértices
    for (int count = 0; count < V - 1; count++) {		
      /* Seleciona o vértice com menor distância dos vértices ainda não visitados.
       * 
       * u sempre é a origem na primeira iteração.
       */
      int u = minDistance(dist, sptSet);
      
      // Marca o vértice como visitado
      sptSet[u] = true;
      
      /* Atualiza o valor dist dos vértices adjacentes ao vértice selecionado*/			
      for (int v = 0; v < V; v++)				
        /* Atualiza dist[v] apenas se ele não estiver em sptSet, 
         * existe uma aresta entre u e v, e o peso total do caminho da origem até
         * o destino é menor do que o atual dist[v]
         */
        if (!sptSet[v] && graph[u][v] != 0 && dist[u] != Integer.MAX_VALUE && dist[u] + graph[u][v] < dist[v])
          dist[v] = dist[u] + graph[u][v];
    }
    
    // Exibe o vetor com as distâncias
    printSolution(dist);
  }
  
  public static void main(String[] args) {
    int graph[][] = new int[][] {
      { 0,  4, 0,  0,  0,  0, 0,  8, 0 },
      { 4,  0, 8,  0,  0,  0, 0, 11, 0 },
      { 0,  8, 0,  7,  0,  4, 0,  0, 2 },
      { 0,  0, 7,  0,  9, 14, 0,  0, 0 },
      { 0,  0, 0,  9,  0, 10, 0,  0, 0 },
      { 0,  0, 4, 14, 10,  0, 2,  0, 0 },
      { 0,  0, 0,  0,  0,  2, 0,  1, 6 },
      { 8, 11, 0,  0,  0,  0, 1,  0, 7 },
      { 0,  0, 2,  0,  0,  0, 6,  7, 0 }
    };
    
    shortestPath t = new shortestPath();
    t.dijkstra(graph, 0);
  }
}

E que ajuda precisa? Só pra pegar o input do usuário e executar o algoritmo?

Abraço.

solicitar ao usuário o vértice de partida da rota e o vértice de destino e seguida, deve descrever o menor trajeto possível do vértice de partida até o destino

Qual o motivo de sptSet ser um array de Boolean ao invés de boolean?

sptSet[i] será true se o vértice fizer parte do menor caminho,
ou se não for possível continuar

Isso eu entendi, mas não faz sentido você usar uma wrapper class (Boolean) ao invés de um tipo primitivo (boolean).

alterei para o boolean primitivo, mas não estou conseguindo mostrar o caminho do vértice, só mostra o custo

Posta o seu código atualizado.

O programa deve solicitar ao usuário o vértice de partida da rota e o vértice de destino. Em seguida, deve descrever o menor trajeto possível do vértice de partida até o destino. Por exemplo, dado o vértice de partida 2 e o vértice de destino 4 para o grafo abaixo, o programa deve apresentar a saída 2 – 3 – 4.

import java.util.Scanner;

public class shortestPath {

static final int V = 9;

/* Encontra o vértice mais próximo do conjunto de vértices ainda não incluidos na árvore
de menor caminho */
int minDistance(int dist[], Boolean sptSet[]){
	
	// Inicializa o menor valor
	int min = Integer.MAX_VALUE, min_index = -1;

	for (int v = 0; v < V; v++)
		if (sptSet[v] == false && dist[v] <= min) {
			min = dist[v];
			min_index = v;
		}

	return min_index;
}

// Exibe o vetor distancia
void printSolution(int dist[]) {
	System.out.println("Vertex \t\t Distance from Source");
	for (int i = 0; i < V; i++)
		System.out.println(i + " \t\t " + dist[i]);
}

// Imlementa o algoritmo
void dijkstra(int graph[][], int src) {
	// Vetor que possui o resultado. Armazena a distância de cada vértice para a origem.
	//dist[i] possuirá o menor caminho da origem até i.
	int dist[] = new int[V]; 
	
	//sptSet[i] será true se o vértice fizer parte do menor caminho
	//ou se não for possível continuar
	Boolean sptSet[] = new Boolean[V];

	// Inicializa todas as distâncias com o maior valor possível
	//e stpSet[] como false
	for (int i = 0; i < V; i++) {
		dist[i] = Integer.MAX_VALUE;
		sptSet[i] = false;
	}

	// A distância de todo nó para si mesmo é zero
	dist[src] = 0;

	// Encontra o menor caminho para todos os vértices
	for (int count = 0; count < V - 1; count++) {			
		/* Seleciona o vértice com menor distância dos vértices ainda não visitados.
		 * 
		 * u sempre é a origem na primeira iteração.
		 */
		int u = minDistance(dist, sptSet);

		// Marca o vértice como visitado
		sptSet[u] = true;

		/* Atualiza o valor dist dos vértices adjacentes ao vértice selecionado*/			
		for (int v = 0; v < V; v++)				
			/* Atualiza dist[v] apenas se ele não estiver em sptSet, 
			 * existe uma aresta entre u e v, e o peso total do caminho da origem até
			 * o destino é menor do que o atual dist[v]
			 */
			if (!sptSet[v] && graph[u][v] != 0 && dist[u] != Integer.MAX_VALUE && 
			dist[u] + graph[u][v] < dist[v])
				dist[v] = dist[u] + graph[u][v];
	}

	// Exibe o vetor com as distâncias
	printSolution(dist);
}

	public static void main(String[] args) {
		
		int graph [][] = new int[][] { { 0, 4, 0, 0, 0, 0, 0, 8, 0 },
									{ 4, 0, 8, 0, 0, 0, 0, 11, 0 },
									{ 0, 8, 0, 7, 0, 4, 0, 0, 2 },
									{ 0, 0, 7, 0, 9, 14, 0, 0, 0 },
									{ 0, 0, 0, 9, 0, 10, 0, 0, 0 },
									{ 0, 0, 4, 14, 10, 0, 2, 0, 0 },
									{ 0, 0, 0, 0, 0, 2, 0, 1, 6 },
									{ 8, 11, 0, 0, 0, 0, 1, 0, 7 },
									{ 0, 0, 2, 0, 0, 0, 6, 7, 0 } };
	   
		shortestPath t = new shortestPath();
        Scanner scanner = new Scanner(System.in);
		System.out.println("Digite a vértice de partida:"); 
		int input = scanner.nextInt();
		
		System.out.println("Digite a vértice de destino:"); 
		input = scanner.nextInt();
		
		t.dijkstra(graph, input);
		//t.dijkstra(graph, 0) ;
		scanner.close();
	}
}

Ao ler o destino, você está matando o conteúdo da partida.

Mesmo assim seu código não faz sentido, pois você tem um array bidimensional, ou seja, uma matriz, então tanto a sua origem quanto o seu destino precisam ser uma coordenada representando a linha e a coluna do vértice. mas você só está lendo um número.

Outra coisa, seu tópico está duplicado no seguinte post:

Certo, então terei que criar uma coordenada
representando a linha e a coluna do vértice, como assim?

Olha só, você tem a seguinte matriz com 9 linhas e 9 colunas:

int[][] graph = new int[][] {
  { 0,  4, 0,  0,  0,  0, 0,  8, 0 },
  { 4,  0, 8,  0,  0,  0, 0, 11, 0 },
  { 0,  8, 0,  7,  0,  4, 0,  0, 2 },
  { 0,  0, 7,  0,  9, 14, 0,  0, 0 },
  { 0,  0, 0,  9,  0, 10, 0,  0, 0 },
  { 0,  0, 4, 14, 10,  0, 2,  0, 0 },
  { 0,  0, 0,  0,  0,  2, 0,  1, 6 },
  { 8, 11, 0,  0,  0,  0, 1,  0, 7 },
  { 0,  0, 2,  0,  0,  0, 6,  7, 0 }
};

Como é que você informa a posição inicial hoje?

Você só está lendo um número e armazenando numa variável input, mas esse input representa qual posição dessa matriz?

Se eu quiser iniciar a busca a partir da linha 2 coluna 5, e chegar até a linha 8 coluna 1, como eu faço?

Como é que você informa a posição inicial hoje? O método min_index vai retornar a primeira posição

Você só está lendo um número e armazenando numa variável input, mas esse input representa qual posição dessa matriz? Esse input é usado para usuário informar a posição

Se eu quiser iniciar a busca a partir da linha 2 coluna 5, e chegar até a linha 8 coluna 1, como eu faço? Essa parte não entendi

O que a sua matriz representa?

Então posta um exemplo de qual valor você informa e qual é a posição correspondente na matriz.

O que a sua matriz representa? Representa um grafo

Então posta um exemplo de qual valor você informa e qual é a posição correspondente na matriz.
Vértice de partida 2 e o vértice de destino 4

É uma matriz de adjacências.

Não olhei seu algoritmo com calma, mas pense o seguinte. Ao executar o algoritmo de Dijsktra para um grafo ponderado, o resultado esperado é uma árvore, ou seja, um grafo acíclico o que implica que existe um único caminho entre dois vértices contidos em um componente conexo. O seu primeiro problema é ver se o seu algoritmo funciona.

O segundo passo é gerar o caminho fonte-destino. A árvore gerada terá como raiz o vértice fonte e ramificará para os outros vértices. A partir do vértice destino, faça o caminho contrário buscando pela fonte. O armazenamento dessa árvore é feito, no seu caso (pelo menos me parece) no array dist.

Pois é, é o que me parece também, mas o colega insiste que é um grafo, mas nem ele sabe descrever como determinar o ponto de partida e de destino.

Acredito que o problema nem está no algoritmo mas sim em entender o que é um grafo e o que é uma matriz de adjacências.

Talvez faltou prestar mais atenção na aula.
:man_shrugging:

É que uma matriz de adjacências é uma das formas de implementar um grafo.

1 curtida

Não tinha me tocado disso.

Não me faz sentido utilizar matriz de adjacências para representar um grafo uma linguagem com foco em programação orientada à objetos.

Mas essa é minha singela opinião.